Full Content is available to subscribers

Subscribe/Learn More  >

Fabrication of 3D Scaffolds via E-Jet Printing for Tendon Tissue Repair

[+] Author Affiliations
Y. Wu, J. Y. H. Fuh, Y. S. Wong, J. Sun

National University of Singapore, Singapore, Singapore

Paper No. MSEC2015-9367, pp. V002T03A005; 5 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5683-3
  • Copyright © 2015 by ASME


Current clinical grafts used in tendon treatment are subject to several restrictions and there is a significant demand for alternative engineered tissue. The previously reported tendon scaffolds mainly based on electrospinning and textile technologies showed promising results for tendon regeneration. However, limitations, such as small pore size, nutrition transmission, cell attachment, exist universally in such scaffolds. In this work, a novel tissue engineered polycaprolactone (PCL) tendon scaffold based on electrohydrodynamic jet printing (E-Jetting) was developed for investigation. In preliminary in-vitro study, human tenocytes were seeded in scaffolds with pore size of ∼106 μm to investigate the cell attachment, morphology and alignment. This study suggested that E-jetted tendon scaffold highly mimicked hierarchical construction from fiber to fascicle level of the native tendon, and has potential to be an alternative tendon regeneration tool.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In