0

Full Content is available to subscribers

Subscribe/Learn More  >

Molecular Dynamic Simulation of Surface Amorphization of NiTi Under Dynamic Shock Peening

[+] Author Affiliations
Zhencheng Ren, Chang Ye, Yalin Dong

University of Akron, Akron, OH

Paper No. MSEC2015-9320, pp. V002T01A003; 7 pages
doi:10.1115/MSEC2015-9320
From:
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5683-3
  • Copyright © 2015 by ASME

abstract

Surface amorphization of NiTi has been achieved by ultra-high strain rate dynamic loading induced by ultrasonic nano-crystal surface modification (UNSM). The amorphous microstructure was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). To better understand the physical mechanism of the amorphization process, molecular dynamics (MD) simulation has been implemented to simulate the shock loading process and the results are consistent with the experiment. Central-symmetry parameter (CSP) and radial distribution function (RDF) were used to characterize the microstructure evolution. The simulation result demonstrates that the deformation is first formed as “twining” structure and then transformed into amorphization. The simulation also shows that shock speeds affect the amorphization level on the surface, while the shock amplitude mainly affects the amorphization depth.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In