Full Content is available to subscribers

Subscribe/Learn More  >

Cryogenic Cutting of AZ31B-O Mg Alloy for Improved Surface Integrity: Part I — Process Principles and Material Modeling

[+] Author Affiliations
Ninggang Shen, Hongtao Ding

University of Iowa, Iowa City, IA

Paper No. MSEC2015-9323, pp. V001T02A104; 9 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME


This is Part I of a two-part series numerical study which investigates the improvement of surface integrity of AZ31B-O magnesium (Mg) alloy by cryogenic cutting. A light-weighted material of Mg alloy has great potentials for a more extensive application in transportation/aerospace industries and other areas, such as biodegradable medical implants. However, undesired surface integrity, in terms of grain size, microhardness, residual stresses, limit the functional performance of products with components in these materials on strength, wear resistance, fatigue resistance, and corrosion resistance. In this paper, the principle of improved surface integrity by cryogenic cutting is firstly introduced based on a previous experimental study on cryogenic orthogonal cutting of AZ31B-O Mg alloy. To demonstrate the capability of cryogenic cutting on improvement for AZ31B-O Mg alloy components, the improved surface integrity is characterized in terms of better surface finish, ultrarefined grains, increased surface microhardness, and compressive residual stress. A physics-based constitutive material model of plasticity and grain refinement is developed based on both slip and twinning mechanisms for the AZ31B-O Mg alloy undergoing cryogenic cutting.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In