0

Full Content is available to subscribers

Subscribe/Learn More  >

Wear Mechanism Analysis of Coated Carbide Tools in High-Speed Milling of Ti-6Al-4V Alloy via Cross-Section Characterization of Worn Cutting Edge

[+] Author Affiliations
Anhai Li

Shandong University, Jinan, ChinaShandong Binzhou Bohai Piston Co., Ltd., Binzhou, China

Jun Zhao

Shandong University, Jinan, China

Fenghua Lin

Shandong Binzhou Bohai Piston Co., Ltd., Binzhou, China

Paper No. MSEC2015-9335, pp. V001T02A078; 6 pages
doi:10.1115/MSEC2015-9335
From:
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME

abstract

Tool wear analysis is essential in high speed machining, especially in the intermittent cutting and milling processes. Analyses of tool wear mechanisms will be beneficial for proposing the suggestions in the tool design process how to enhance the tool material properties to improve the cutting performance and eventually tool life. Wear mechanisms of coated carbide tools in high-speed dry milling of Ti-6A1-4V were assessed by characterization of the cross-section of worn tool cutting edge utilizing scanning electron microscopy, and the element distribution of the worn tool surface was detected by using energy dispersive spectroscopy. Results show that flank wear, chipping and flaking of tool material on the rake face and/or at the nose of tools were the dominant failure modes. And synergistic interaction among coating delamination, erosion wear, adhesion, dissolution-diffusion wear, and thermal-mechanical fatigue wear were the main wear mechanisms analyzed from cross-sectional worn cutting edge. Erosion wear was identified in high speed milling of Titanium alloy and introduced into the wear mechanisms of metal cutting tools. The hydromechanics characteristic of the chips produced in high-speed machining should be responsible for erosion wear of cuttings tools.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In