Full Content is available to subscribers

Subscribe/Learn More  >

Development of Si3N4/(W,Ti)C/Co Graded Nano-Composite Ceramic Tool and its Performance in Turning GH2132 Alloy

[+] Author Affiliations
X. H. Tian, J. Zhao, F. Gong, W. Z. Qin, Q. Z. Xu

Shandong University, Jinan, China

Paper No. MSEC2015-9333, pp. V001T02A077; 6 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME


Strength and fracture toughness of ceramic tool materials can be enhanced by adding ductile phases. However, the hardness will be decreased, which is undesirable especially for cutting tool materials. Combining with functionally gradient materials (FGMs), the mechanical properties can be tailored so as to achieve high hardness at the outside of the ceramic materials leaving a relatively tough core inside. In this paper, a Si3N4/(W, Ti)C/Co graded composite ceramic tool material was fabricated by hot pressing technique. The composites without Co were used as the surface layers and the composites containing Co were used as the inner layers. Subsequently, the cutting performance of the graded ceramic cutting tool in turning iron-based high temperature alloy GH2132 was studied in comparison with common reference tool. The cutting forces, cutting temperature, tool wear modes and failure mechanisms were discussed. Results revealed that the resultant cutting forces firstly decrease and then increase with the increase of cutting speed, while the maximum cutting temperature increases gradually. Tool live of the FGM tool exceeds that of the corresponding common ceramic tool with the same composition systems. Formation of the residual compressive stress in the surface layer induced by the graded structure contributed to the longer tool life. The main failure modes of the FGM tool were adhesion, groove wear on the rake face and notch wear on the flank face. The graded tool shows better notch wear resistance than the common reference tool.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In