Full Content is available to subscribers

Subscribe/Learn More  >

4D Printing: Design and Fabrication of 3D Shell Structures With Curved Surfaces Using Controlled Self-Folding

[+] Author Affiliations
Dongping Deng, Yong Chen

University of Southern California, Los Angeles, CA

Paper No. MSEC2015-9459, pp. V001T02A070; 9 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME


Self-folding structures such as origami-based structures have been studied by artists, mathematicians and engineers. New applications are emerging in fields such as biomedical and electronics. Self-folding structures can potentially extend three-dimensional (3D) printing into four-dimensional (4D) printing by intelligently designed material distribution in order to achieve controlled shape deformation over time. Traditionally, self-folding structures are folded along pre-defined hinges such that neighboring facets can transform their shapes. In this study, we present a new design and fabrication approach of self-folding structures with no foldable hinges. A significant benefit is its capability in fabricating shapes with smooth curved surfaces.

Our self-folding method is based on a thermally responsive mechanism, where a thermal responsive film is used as the active material while another polymer material coated on the film is used as the constraining material. When the structure is heated, the two sides of the film will shrink differently due to the constraining material. Consequently the structure will fold. By changing the constraining patterns and coated material properties, the film can be self-folded into different shapes. Three types of folding features are presented in our study. Based on them, an unfolding algorithm is presented for a given shell structure with curved surfaces. Theoretical analysis and experimental tests are presented to demonstrate the capability of the self-folding method. Its limitation and future work are also discussed.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In