Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Nanoclay on the Rheological Properties of Polylactic Acid/Polyhydroxybutyrate-Valerate Blends

[+] Author Affiliations
Haibin Zhao

Shandong University, Jinan, Shandong, ChinaFudan University, Shanghai, ChinaSouth China University of Technology, Guangzhou, China

Xiangfang Peng

South China University of Technology, Guangzhou, China

Paper No. MSEC2015-9223, pp. V001T02A052; 6 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME


In this article, the effects of nanoclay (CN) on the rheological behavior of polylactic acid (PLA)/polyhydroxybutyrate–valerate (PHBV) blends was investigated. The rheological behavior of PLA/PHBV blends showed a Newtonian plateau that converted to strong shear thinning behavior over the full range of frequency by the incorporation of nanoclay. The results indicate that the storage modulus and complex viscosity of PLA/PHBV blends were sensitive to nanofillers. An obvious pseudo-solid-like behavior over a wide range of frequency in PLA/PHBV/CN nanocomposites showed that the strong interaction between the PLA/PHBV blend and the nanoclay restricted the relaxation process of the polymer chains. Therefore, the PLA/PHBV/CN nanocomposites possess a higher modulus and greater melt strength, which are desirable for creating an improved foamed structure when manufactured via microcellular injection molding.

Copyright © 2015 by ASME
Topics: Rheology , Nanoclays



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In