0

Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Residual Stress in Multi-Step Orthogonal Cutting

[+] Author Affiliations
Yamin Shao, Omar Fergani, Steven Liang

Georgia Institute of Technology, Atlanta, GA

Torgeir Welo

Norwegian University of Science and Technology, Trondheim, Norway

Paper No. MSEC2015-9455, pp. V001T02A037; 4 pages
doi:10.1115/MSEC2015-9455
From:
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME

abstract

The effect of residual stresses on the fatigue behavior as well as the dimensional stability of high precision part is very important. Machining operation consists generally multi-step operations from roughing to finishing. It is therefore critical to predict residual stresses under such configuration. In this paper, an analytical algorithm is proposed to predict the final residual stresses induced by a multi-step machining operation capturing the change of stress state of the workpiece as well as material hardening behavior during the multi-step orthogonal cutting. The model predictions were compared to other work’s finite element method (FEM) predictions.

Copyright © 2015 by ASME
Topics: Stress , Cutting

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In