0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Finite Element Thermal Models for Workpiece Temperature in Cylinder Boring

[+] Author Affiliations
Lei Chen, Albert J. Shih

University of Michigan, Ann Arbor, MI

Juhchin A. Yang

Ford Motor Company, Livonia, MI

Bruce L. Tai

Texas A&M University, College Station, TX

Paper No. MSEC2015-9415, pp. V001T02A034; 9 pages
doi:10.1115/MSEC2015-9415
From:
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME

abstract

The accuracy and computational efficiency of four finite element thermal models for workpiece temperature in cylinder boring are studied. High temperature in precision cylinder boring of automotive engine block can distort the workpiece, leading to thermally-induced dimensional and geometrical errors. In cylinder boring, the depth of cut is small compared to the bore diameter, so a fine mesh is usually needed to analyze the workpiece temperature distribution; however fine mesh on a relatively large workpiece also takes extensive computational resources. To understand the trade-off between accuracy and computational efficiency, the advection, surface heat, heat carrier, and ring heat finite element thermal models are introduced and compared quantitatively in a boring process. It is found comparable global temperature estimation from all four models. For the temperature near the cutting zone, the advection and surface heat models are more accurate to predict local temperatures but consume more computational resources. The heat carrier model predicts the surface temperature with reasonable accuracy and computational time. The ring heat model is the most computationally efficient but fails to accurately estimate local peak temperatures.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In