Full Content is available to subscribers

Subscribe/Learn More  >

Role of Tool Flank Wear and Machining Speed in Developing of Residual Stress in Machined Surface During High Speed Machining of Titanium Alloys

[+] Author Affiliations
Xueping Zhang

Shanghai Jiao Tong University, Shanghai, China

Rajiv Shivpuri

The Ohio State University, Columbus, OH

Anil K. Srivastava

The University of Texas-Pan American, Edinburg, TX

Paper No. MSEC2015-9401, pp. V001T02A033; 9 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME


Residual stresses generated from finish machining have a significant impact on the fatigue life of mechanical components by controlling crack initiation and propagation processes in their near subsurface. As governing variables, tool geometry, tool wear, machining parameter, work material property, and lubrication conditions have been widely studied to determine their effects on residual stress pattern in machined surface and subsurface. Among those parameters, tool flank wear was seldom fully investigated although tool flank wear, as well as machining speed, has been identified as the most important contributor to residual stress. Especially, tool flank wear becomes more significant due to the poor work thermal property during the high speed machining of titanium Ti-6Al-4V alloy. This study aims to investigate the combined role of tool flank wear and machining speed in developing residual stress in the machining of titanium alloy using finite element method. A microstructure sensitive material model based on Self Consistent Method (SCM) is adopted to incorporate the phase state and its transformations during machining cycle. Critical flank wear land and corresponding machining speeds are identified, beyond which compressive residual stresses are transferred into tensile residual stresses. High machining speeds demonstrate a distinct influence on residual stresses by means of promoting tool flank wear rate. The numerical simulation results are validated by empirical data provided in previous research.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In