Full Content is available to subscribers

Subscribe/Learn More  >

A Line Heat Input Model for Additive Manufacturing

[+] Author Affiliations
Jeff Irwin

The Pennsylvania State University, University Park, PA

P. Michaleris

The Pennsylvania State University, University Park, PAPan Computing LLC, State College, PA

Paper No. MSEC2015-9240, pp. V001T02A019; 11 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME


A line input model has been developed which makes the accurate modeling of powder bed processes more computationally efficient. Goldak’s ellipsoidal model has been used extensively to model heat sources in additive manufacturing, including lasers and electron beams. To accurately model the motion of the heat source, the simulation time increments must be small enough such that the source moves a distance smaller than its radius over the course of each increment. When the source radius is small and its velocity is large, a strict condition is imposed on the size of time increments regardless of any stability criteria. In powder bed systems, where radii of 0.1 mm and velocities of 500 mm/s are typical, a significant computational burden can result. The line heat input model relieves this burden by averaging the heat source over its path. This model allows the simulation of an entire heat source scan in just one time increment. However, such large time increments can lead to inaccurate results. Instead, the scan is broken up into several linear segments, each of which is applied in one increment. In this work, time increments are found that yield accurate results (less than 10 % displacement error) and require less than 1/10 of the CPU time required by Goldak’s moving source model. A dimensionless correlation is given that can be used to determine the necessary time increment size that will greatly decrease the computational time required for any powder bed simulation while maintaining accuracy.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In