Full Content is available to subscribers

Subscribe/Learn More  >

Laser Induced Porosity and Crystallinity Modification of a Bioactive Glass Coating on Titanium Substrates

[+] Author Affiliations
Panjawat Kongsuwan, Grant B. Brandal, Y. Lawrence Yao

Columbia University, New York, NY

Paper No. MSEC2015-9272, pp. V001T02A016; 10 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME


Functionally graded bioactive glass coatings on bioinert metallic substrates were produced by using continuous-wave (CW) laser irradiation. The aim is to achieve strong adhesion on the substrates and high bioactivity on the top surface of a coating material for load-bearing implants in biomedical applications. The morphology and microstructure of the bioactive glass from the laser coating process were investigated as functions of processing parameters. Laser sintering mechanisms were discussed with respect to the resulting morphology and microstructure. It has been shown that double layer laser coating results in a dense bond coat layer and a porous top coat layer with lower degree of crystallinity than an enameling coating sample. The dense bond coat strongly attached to the titanium substrate with a ten microns wide mixed interfacial layer. A highly bioactive porous structure of the top coat layer is beneficial for early formation of a bone-bonding HCA layer. The numerical model developed in this work also allows for prediction of porosity and crystallinity in top coat layers of bioactive glass developed through laser induced sintering and crystallization.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In