Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Thermal Assistance on the Joining of Al6063 During Flow Drill Screwdriving

[+] Author Affiliations
Jamie D. Skovron, Durul Ulutan, Laine Mears

Clemson University, Greenville, SC

Duane Detwiler, Daniel Paolini

Honda R&D Americas, Raymond, OH

Boris Baeumler

DEPRAG, Inc., Lewisville, TX

Laurence Claus

EJOT® GmbH, Bad Laasphe, Germany

Paper No. MSEC2015-9435, pp. V001T02A011; 7 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME


An increase in fuel economy standards has affected automakers’ decision toward designing lightweight vehicles and therefore transitioning from steel-based bodies to ones predominantly composed of aluminum. An introduction to lightweight materials couples that of lightweight joining with a thermo-mechanical process, Flow Drill Screwdriving (FDS). This process is favored in terms of robustness, short installation time, and only requiring access to one side. The most significant challenge of this process is reducing the material sheet separation to minimize any possibility of corrosion buildup. Warm forming of aluminum has been shown to increase ductility and formability of the material and thus the process benefits from a reduced cycle time that leads to cost reduction. In this study, the effect of an auxiliary heat source on the flow of Al6063 is investigated for the FDS application. In order to accomplish this task, a conduction-heating ring is implemented into the FDS process to raise the material temperature and thus reduce the total cycle time. Different preprocess material temperatures are studied to determine the effect of material temperature on the process time, installation torque, and sheet separation. As a result, with the thermal assistance, a reduction in the process time up to 52%, the maximum installation torque by 20%, and sheet separation by 11% were attained, indicating better quality joints at a lower cost.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In