0

Full Content is available to subscribers

Subscribe/Learn More  >

Graphene Oxide Colloidal Suspensions as Cutting Fluids for Micromachining: Part 1 — Fabrication and Performance Evaluation

[+] Author Affiliations
Bryan Chu, Eklavya Singh, Johnson Samuel, Nikhil Koratkar

Rensselaer Polytechnic Institute, Troy, NY

Paper No. MSEC2015-9372, pp. V001T02A008; 10 pages
doi:10.1115/MSEC2015-9372
From:
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME

abstract

This paper is aimed at investigating the effects of graphene oxide platelet (GOP) geometry (i.e., lateral size and thickness) and oxygen functionalization on the cooling and lubrication performance of GOP colloidal suspensions. The techniques of thermal reduction and ultrasonic exfoliation were used to manufacture three different types of GOPs. For each of these three types of GOPs, colloidal solutions with GOP concentrations varying between 0.1–1 wt% were evaluated for their dynamic viscosity, thermal conductivity and micromachining performance. The ultrasonically-exfoliated GOPs (with 2–3 graphene layers and lowest in-solution characteristic lateral length of 120 nm) appear to be the most favorable for micromachining applications. Even at the lowest concentration of 0.1 wt%, they are capable of providing a 51% reduction in the cutting temperature and a 25% reduction in the surface roughness value over that of the baseline semi-synthetic cutting fluid. For the thermally-reduced GOPs (with 4–8 graphene layers and in-solution characteristic lateral length of 562–2780 nm), a concentration of 0.2 wt% appears to be optimal. The findings suggest that the differences seen between the colloidal suspensions in terms of their droplet spreading, evaporation and the subsequent GOP film-formation characteristics may be better indicators of their machining performance, as opposed to their bulk fluid properties.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In