Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Wear Process of Electroplated CBN Grinding Wheel

[+] Author Affiliations
Tianyu Yu, Ashraf F. Bastawros, Abhijit Chandra

Iowa State University, Ames, IA

Paper No. MSEC2015-9319, pp. V001T02A005; 7 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME


The wear of Cubic Boron Nitride (CBN) grinding wheel directly affects the workpiece surface integrity and tolerances. This paper summarizes a combined experimental-modeling framework for CBN grinding wheel life expectancy utilized in both cylindrical and surface grinding. The presented fatigue type model is based on grit pullout mechanism and the associated state of damage percolation. The unique grit-workpiece interaction process leads to a non-uniform spatial distribution of the grit wear. The life expectancy model can be described as a function of the process parameters, grinding wheel geometry and topology, workpiece material properties, etc. The developed modeling framework will greatly enhance the understanding of electroplated CBN grinding wheel wear mechanism.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In