0

Full Content is available to subscribers

Subscribe/Learn More  >

Contact Forces in Unguided Vibratory Finishing

[+] Author Affiliations
Richard Brocker, Frederik Vits, Patrick Mattfeld, Fritz Klocke

RWTH Aachen University, Aachen, Germany

Paper No. MSEC2015-9220, pp. V001T02A001; 7 pages
doi:10.1115/MSEC2015-9220
From:
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5682-6
  • Copyright © 2015 by ASME

abstract

In vibratory finishing the material removal rate is influenced by the contact forces between work piece and media. In this paper a measurement system is presented which is capable of measuring the contact forces between work piece and media in unguided vibratory finishing. The unique feature of the measurement system is its completely wireless construction. The measurement results are not influenced by wires of the force sensor system including the electrical power supply and the data logging. By means of this measurement system, contact forces can be measured in unguided vibratory finishing processes for the first time. Furthermore, the influence of media size and adjustment of the unbalance motor like revolution speed, phase angle and mass distribution between the upper and the lower eccentric weight was investigated.

Copyright © 2015 by ASME
Topics: Finishing

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In