0

Full Content is available to subscribers

Subscribe/Learn More  >

Estimation of the Rotordynamic Coefficients of a Compressor Mounted on Gas Bearings Using the Phase Diagram and the Unbalance Response

[+] Author Affiliations
Claudia Aide González, Juan Carlos Jáuregui

Universidad Autónoma de Querétaro, Querétaro, Qro., Mexico

Oscar De Santiago, Víctor Solórzano

CIATEQ, A.C., Querétaro, Qro., Mexico

Paper No. GT2015-42735, pp. V07AT31A010; 8 pages
doi:10.1115/GT2015-42735
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 7A: Structures and Dynamics
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5676-5
  • Copyright © 2015 by ASME

abstract

This paper presents a novel method for identifying the dynamic parameters of a gas bearing, whose force coefficients are strong functions of frequency. The method is based on the analysis of the phase diagram with the model assuming a mass-damper-spring system with time-dependent force coefficients. Usually, it is necessary a controlled mechanism to find the transfer function, this condition limits the application of the method. On the other hand, estimation of the damping and stiffness parameters under real loading is very cumbersome and requires a special care on identifying the excitation forces. One of the main difficulties is the isolation of noise and those vibration signals with an unidentified source. In this work, the excitation force was taken from the unbalance loading of a rotor test. Therefore, there is no need for a special test rig. The dynamic parameters can be estimated analyzing data from the actual rotor mounted on the gas bearings. Identifying the parameters that cause gas bearing instabilities is a big challenge. The gas properties are very sensitive to temperature and pressure changes, and, as a consequence the bearing rotor-dynamic coefficients change drastically and the rotor behaves chaotically, which means that the dynamic parameters are nonlinear. In this research a methodology based on the phase diagram construction to identify nonlinear instabilities of gas bearings is presented. The results show the method capability to estimate the dynamic coefficients by the analysis of the energy variation.

Among nonparametric methods, the phase diagram or phase space is in use to identify nonlinearities in dynamic systems. The identification is conducted through the analysis of the energy variations. The energy variations can be represented as a three dimensional function E(x,v,t). In this way the phase diagram can be related to the frequency and the dynamic parameters of the system. According to Taken’s theorem, a dynamic system can be obtained by reconstructing the phase diagram. Then, using this method, the damping and stiffness coefficients are estimated.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In