0

Full Content is available to subscribers

Subscribe/Learn More  >

Ion Current Measurements as a Method for the Detection of the Reaction Rate in Combustion With Swirl Stabilized Airblast Injection Systems

[+] Author Affiliations
J. Christopher Wollgarten, Nikolaos Zarzalis

Karlsruhe Institute of Technology, Karlsruhe, Germany

Fabio Turrini, Antonio Peschiulli

GE Avio S.r.l., Rivalta di Torino, TO, Italy

Paper No. GT2015-42357, pp. V006T05A006; 10 pages
doi:10.1115/GT2015-42357
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy; Honors and Awards
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5675-8
  • Copyright © 2015 by ASME

abstract

Due to strict emission legislation, the trend in the development of aero-engine gas turbine combustion is heading towards lean burning approaches. Lean combustion reduces the combustion temperatures and therefore also the nitrogen oxides emissions. Unfortunately, lean combustion suffers from instabilities and the operation close to the point of lean blowout increases the risk of imminent blowoff. Active stability control is therefore inevitable. The objective of this work is to evaluate the signal obtained from an ion current measurement technique to enable combustion control for aircraft propulsion applications in the near future.

In the past ion current measurements have been used in several studies as flame turbulence analyzer and to detect the reaction rate. However, investigations in lean burning and swirl stabilized airblast injection combustors for future propulsion concepts are rare. The signal obtained from an ion current detector inside a combustor depends strongly on the measurement position. In this experimental investigation field measurements at atmospheric conditions of the ion concentration in a tubular combustor with a sampling rate of 8 kHz are compared with 4 kHz time resolved temperature and OH* chemiluminescence measurements in order to determine the position of the reaction inside the combustor. Variations were performed of the air to fuel ratio (AFR), the air preheating temperature and the pressure drop across the injection system to clarify the interpretation of the ion current signal. The results indicate a strong dependence of the ion current signal on the AFR and that the technique has distinct advantages compared to OH* chemiluminescence measurements: The measurement equipment is comparable non-expensive and the results reveal that the reaction rate is measured directly and are not interpreted from a 3D image. A transition in flame shape from a compact to a tornado flame can be clearly identified with the applied probe. Furthermore, regions with high temperature fluctuations do not necessarily reveal the reaction zone in a recirculating flow field.

Copyright © 2015 by ASME
Topics: Combustion

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In