Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Enhancement and Pressure Loss Characteristics of Zig-Zag Channel With Dimples and Protrusions

[+] Author Affiliations
Sin Chien Siw, Minking K. Chyu

University of Pittsburgh, Pittsburgh, PA

Mary Anne Alvin

U.S. Department of Energy, Pittsburgh, PA

Paper No. GT2015-43852, pp. V05BT13A025; 11 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7
  • Copyright © 2015 by ASME


This paper described a detailed experimental study to explore an internal cooling passage that mimic a “zig-zag” pattern. There are four passages connected by 110° turning angle in a periodic fashion, hence the name. Experiments are performed in a scaled-up test channel with a cross-section of 63.5mm by 25.4mm, corresponding to the aspect ratio of 2.5:1. Compared to the conventional straight internal cooling passages, the zig-zag channel with several turns will generate additional secondary vortices while providing longer flow path that allows coolant to remove much more heat load prior to discharge into the hot mainstream. Surface features, (1) dimples, and (2) protrusions are added to the zig-zag channel to further enhance the heat transfer, while contributed to larger wetted area. The experiment utilizes the well-established transient liquid crystal technique to determine the local heat transfer coefficient distribution of the entire zig-zag channel. Protrusions exhibit higher heat transfer enhancement than that of dimples. However, both designs proved to be inferior compared to the rib-turbulators. Pressure loss in these test channels is approximately twofold higher than that of straight smooth test channel due to the presence of turns; but the pressure loss is lower than the zig-zag channel with rib-turbulators. The result revealed that one advantage of having either protrusions or dimples as these surface elements will resulted in gradual and more uniform increment of heat transfer throughout the entire channel compared to previous test cases.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In