0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow

[+] Author Affiliations
A. Arisi, J. Phillips, W. F. Ng, S. Xue

Virginia Polytechnic Institute and State University, Blacksburg, VA

H. K. Moon, L. Zhang

Solar Turbines Inc., San Diego, CA

Paper No. GT2015-43073, pp. V05BT13A014; 11 pages
doi:10.1115/GT2015-43073
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7
  • Copyright © 2015 by ASME

abstract

Detailed heat transfer coefficient (HTC) and film cooling effectiveness (Eta) distribution on a squealer tipped first stage rotor blade were measured using an infrared (IR) technique. The blade tip design, obtained from a Solar Turbines Inc. gas turbine, consisted of double purge hole exits and four ribs within the squealer cavity, with a bleeder exit port on the pressure side close to the trailing edge. The tests were carried out in a transient linear transonic wind tunnel facility under land-based engine representative Mach/Reynolds number. Measurements were taken at an inlet turbulent intensity of Tu = 12%, with exit Mach numbers of 0.85 (Reexit=9.75×105) and 1.0 (Reexit = 1.15×106) with the Reynolds number based on the blade axial chord and the cascade exit velocity. The tip clearance was fixed at 1% (based on engine blade span) with a purge flow blowing ratio BR = 1.0. At each test condition, an accompanying numerical study was performed using Reynolds Averaged Navier Stokes (RANS) equations solver ANSYS Fluent to further understand the tip flow characteristics. The results showed that the tip purge flow has a blocking effect on the leakage flow path. Furthermore, the ribs significantly altered the flow (and consequently heat transfer) characteristics within the squealer tip cavity resulting in a significant reduction in film cooling effectiveness. This was attributed to increased coolant-leakage flow mixing due to increased recirculation within the squealer cavity. Overall, the peak heat transfer coefficient on the cavity floor increased with exit Mach/Reynolds number.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In