0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Inlet Swirl on Hot Streak Migration Across Tip Clearance and Heat Transfer on Rotor Blade Tip

[+] Author Affiliations
Zhaofang Liu, Zhiduo Wang, Zhenping Feng

Xi’an Jiaotong University, Xi’an, China

Paper No. GT2015-42625, pp. V05BT13A011; 12 pages
doi:10.1115/GT2015-42625
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7
  • Copyright © 2015 by ASME

abstract

This paper presents an investigation on the hot streak migration across tip clearance and heat transfer on blade tip in a high pressure (HP) gas turbine with different inlet swirl directions and clocking positions. The geometry is taken from the first stage of GE-E3 turbine engine. Two swirl directions (positive and negative) and two circumferential clocking positions (aligning with S1 nozzle leading edge and mid passage) for inlet hot streak and swirl have been employed and investigated, respectively. Two cases with only hot streak at different inlet circumferential positions are adopted as the baseline in this study. By solving the unsteady compressible Reynolds-averaged Navier-Stokes equations, the time dependent solutions were obtained. The results indicate that the influence of inlet swirl on pressure distribution focuses on the suction side. Positive swirl attracts more hot fluid to the upper endwall, when it aligns with nozzle stator leading edge. Because of the squeezing mechanism between positive swirl and leakage flow, the heat transfer on rotor blade tip is more uniform. While negative swirl increases tip leakage flow and the heat load at the first half on tip surface. In all cases with swirl, the heat load at the second half on blade tip is effectively reduced, which is good for cooling rotor blade tip. If the stator is cooled effectively, inlet positive swirl aligning with nozzle vane leading edge will be the best choice for protecting rotor blade tip. By comparing with the results of previous literature, it is concluded that whatever arrangement the blade rows locate, the swirl direction which is opposite to the leakage flow should be chosen for protecting not only blade surface but also blade tip when the inlet swirl exists.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In