Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Mainstream Turbulence Intensity on Heat Transfer Characteristics of a HP Turbine Stage With Inlet Hot Streak

[+] Author Affiliations
Zhiduo Wang, Zhaofang Liu, Zhenping Feng

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. GT2015-42593, pp. V05BT13A010; 13 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7
  • Copyright © 2015 by ASME


An unsteady computational study were carried out for the GE-E3 HP turbine at inflow turbulence intensities of 5%, 10% and 20% accompanying with inlet hot streak (HS) at two circumferential positions (impinging and non-impinging relative to vane leading edge) to analyze the interacted turbulence and HS influences. Several validation studies were performed to investigate the heat transfer prediction ability of shear stress transport (SST) turbulence model coupled with γ-θ transition model. Turbulence decay mechanisms in turbine passage were presented, and the airfoil heat transfer behaviors were explored by means of both time-averaged adiabatic wall temperature and heat transfer coefficient (HTC). The results indicate that increase of inflow turbulence leads to favorable turbine temperature distributions in general, and on the blade and tip surface in particular, especially for the non-impinging case and inflow turbulence increasing from 10% to 20%. While the vane and blade surface area-averaged temperatures are hardly changed, a maximum area-averaged temperature drop of 8.9 K is induced at the tip surface. Higher HTC is observed at vane, blade pressure surface, and suction surface mid region at higher turbulence. However, HTCs at endwall regions of blade suction surface and blade tip are insensitive to the turbulence effect, thus the heat load of these regions is not critical when the inflow turbulence intensity is increased. HS position not only affects the airfoil surface temperature variations, but also slightly affects the vane and blade midspan HTC for the variation of fluid driving temperature.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In