0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhancement of Film Cooling Effectiveness Using Backward Injection Holes

[+] Author Affiliations
Sehjin Park, Eui Yeop Jung, Seon Ho Kim, Ho-Seong Sohn, Hyung Hee Cho

Yonsei University, Seoul, Korea

Paper No. GT2015-43853, pp. V05BT12A047; 9 pages
doi:10.1115/GT2015-43853
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7
  • Copyright © 2015 by ASME

abstract

Film cooling is a cooling method used to protect the hot components of a gas turbine from high temperature conditions. For this purpose, high and uniform film cooling effectiveness is required to protect the vanes/blades from excessive thermal stress. Backward injection is proposed as one of the methods for the improvement of film cooling effectiveness. In this study, experiments were performed to investigate the effect of backward injection on film cooling effectiveness, using pressure sensitive paint (PSP) method. Four experimental configurations were composed of forward and backward injection cylindrical holes. The cylindrical holes were aligned in two staggered rows with pitch (p) of 6d and row spacing (s) of 3d. The injection angles (α) of the cylindrical holes were 35° and 145° for forward and backward injection, respectively. The blowing ratios (M) ranged from 0.5 to 2.0 and the density ratio (DR) was about 1. The results indicate that backward injection enhanced not only film cooling effectiveness but also the lateral cooling uniformity. At a high blowing ratio, all configurations demonstrated higher film cooling effectiveness with backward injection than with only forward injection; thus, the dispersion of the backward injection jets enhanced the lateral coverage over wide areas. Configuration, in particular, arranged with forward injection in the first row and backward injection in the second row, obtained the highest film cooling effectiveness among the four cases studied, due to the dispersion of the backward injection jets and the coolant supply from the forward injection jets at a high blowing ratio.

Copyright © 2015 by ASME
Topics: Film cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In