Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Large Eddy Simulation Predictive Capability for Compound Angle Round Film Holes

[+] Author Affiliations
Gregory Rodebaugh, Zachary Stratton

GE Global Research, Niskayuna, NY

Gregory Laskowski

GE Aviation, Lynn, MA

Michael Benson

United States Military Academy, West Point, NY

Paper No. GT2015-43602, pp. V05BT12A040; 12 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7
  • Copyright © 2015 by ASME


Film cooling holes with a compound angle are commonly used on high pressure turbine components in lieu of axial holes to improve effectiveness or as a result of manufacturing constraints. Whereas large eddy simulation (LES) of axial holes is becoming more common place, assessment of LES predictive ability for compound angle hole has been limited. For this study, the selected compound angle round (CAR) hole configuration has a 30 degree injection angle, a 45 degree compound angle, and a density ratio of 1.5. The geometry, flow conditions, and experimental adiabatic effectiveness validation data are from McClintic et al. [28]. The low free stream Mach number of the experiment puts the flow in the incompressible regime. Two LES solvers are evaluated, Fluent and FDL3Di, on structured meshes with a range of blowing ratios simulated for plenum, inline coolant crossflow, and counter coolant crossflow feed holes. When a steady inlet profile is used for the main flow, LES agreement with the data is poor. The inclusion of a resolved turbulent boundary layer significantly improves the predictive quality for both solvers; consequently, resolved inflow turbulence is a required aspect for CAR hole LES. The remaining differences between the simulations and IR data are partly attributed to the steady coolant inlet profiles used for the counter and inline cross feeds.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In