0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Net Heat Flux Reduction at Combustion Temperatures

[+] Author Affiliations
Nathan J. Greiner, Marc D. Polanka, James L. Rutledge, Andrew T. Shewhart

Air Force Institute of Technology, Wright-Patterson AFB, OH

Paper No. GT2015-42988, pp. V05BT12A028; 11 pages
doi:10.1115/GT2015-42988
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7

abstract

The present work examines film cooling on a flat plate surface with a freestream temperature between 1430K and 1600K and a coolant to freestream density ratio of approximately two. Since the objective of film cooling is to reduce heat flux to a surface, Net Heat Flux Reduction (NHFR) is used to quantify film cooling performance. It is first demonstrated that non-dimensional matching can be used to scale NHFR between freestream temperature conditions of 1490K and 1600K. Next, the NHFR of a single row of cylindrical holes, fan-shaped holes, holes embedded in a trench, and a slot are compared at a blowing ratio of unity. Finally, the NHFR of five rows of cylindrical holes, holes embedded in trenches, and slots are compared to show the effect of a build-up of coolant near the wall.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In