Full Content is available to subscribers

Subscribe/Learn More  >

A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure Sensitive Paint

[+] Author Affiliations
Greg Natsui, Zachary Little, Jayanta S. Kapat

University of Central Florida, Orlando, FL

Jason E. Dees

GE Global Research, Niskayuna, NY

Gregory Laskowski

GE Aviation, Lynn, MA

Paper No. GT2015-42707, pp. V05BT12A020; 14 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7
  • Copyright © 2015 by ASME


Pressure sensitive paint (PSP) can be a powerful tool in measuring the adiabatic film cooling effectiveness. There are two distinct sources of error for this measurement technique; the ability to experimentally obtain the data and the validity of the heat and mass transfer analogy for the problem being studied. This paper will assess the experimental aspect of this PSP measurement specifically for film cooling applications.

Experiments are conducted in an effort to quantifiably bound expected errors associated with temperature non-uniformities in testing and photo-degradation effects. Results show that if careful experimental procedures are put in place, both of these effects can be maintained to have less than 0.022 impact on effectiveness.

Through accurate semi-in-situ calibration down to 4% atmospheric pressure, the near-hole distribution of effectiveness is measured with high accuracy. PSP calibrations are performed for multiple coupons, over multiple days. In addition, to reach a partial pressure of 0 the calibration vessel was purged of all air by flowing CO2.

The primary contribution of this paper lies in the uncertainty analysis performed on the PSP measurement technique. A thorough uncertainty analysis is conducted and described, in order to completely understand the presented measurements and any shortcomings of the PSP technique. This quantification results in larger, albeit more realistic, values of uncertainty, and helps provide a better understanding of film cooling effectiveness measurements taken using the PSP technique. The presented uncertainty analysis takes into account all random error sources associated with sampling and calibration, from intensities to effectiveness.

Adiabatic film cooling effectiveness measurements are obtained for a single row of film cooling holes inclined at 20 degrees, with CO2 used as coolant. Data is obtained for six blowing ratios. Maps of uncertainty corresponding to each effectiveness profile are available for each test case. These maps show that the uncertainty varies spatially over the test surface, high effectiveness corresponds to low uncertainty. The noise floors can be as high as 0.04 at effectiveness levels of 0. Day-to-day repeatability is presented for each blowing ratio and shows that laterally averaged effectiveness data is repeatable within 0.02 effectiveness.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In