Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling

[+] Author Affiliations
Luzeng Zhang, Juan Yin, Kevin Liu, Moon Hee-Koo

Solar Turbines Incorporated, San Diego, CA

Paper No. GT2015-42541, pp. V05BT12A016; 12 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7
  • Copyright © 2015 by Solar Turbines Incorporated


Flow fields near the turbine nozzle endwall are highly complex due to the passage vortices and endwall cross flows. Consequently, it is challenging to provide proper cooling to the endwall surfaces. An effective way to cool the endwall is to have film cooling holes forward of the leading edge, often called “inlet-film cooling”. This paper presents the results of an experimental investigation on how the film hole diameter affects the film effectiveness on nozzle endwall and associated phantom cooling effectiveness on airfoil suction side. The measurements were conducted in a high speed linear cascade, which consists of three nozzle vanes and four flow passages. Double staggered rows of film injections, which were located upstream from the nozzle leading edge, provided cooling to the contoured endwall surfaces. Film cooling effectiveness on the endwall surface and corresponding phantom cooling effectiveness on the airfoil suction side were measured separately with a Pressure Sensitive Paint (PSP) technique through the mass transfer analogy. Four different film hole diameters with the same injection angle and the same pitch to diameter ratio were studied for up to six different MFR’s (mass flow ratios). Two dimensional film effectiveness distributions on the endwall surface and two dimensional phantom cooling distributions on the airfoil suction side are presented. Film/phantom cooling effectiveness distributions are pitchwise/spanwise averaged along the axial direction and also presented. The results indicate that both the endwall film effectiveness and the suction side phantom cooling effectiveness increases with the hole diameter (as decreases in blowing ratio for a given MFR) up to a specific diameter, then starts decreasing. An optimal value of the film hole diameter (blowing ratio) for the given injection angle is also suggested based on current study.

Copyright © 2015 by Solar Turbines Incorporated



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In