Full Content is available to subscribers

Subscribe/Learn More  >

A Wall-Function Based Model for Multi-Perforated Walls

[+] Author Affiliations
G. Arroyo Callejo, F. Leglaye

SAFRAN-SNECMA, Moissy-Cramayel, France

E. Laroche, P. Millan

ONERA - The French Aerospace Lab, Toulouse, France

Paper No. GT2015-42103, pp. V05BT12A002; 12 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5672-7
  • Copyright © 2015 by ASME


Effusion cooling is one of the most effective techniques to prevent combustor liner from being damaged. As effusion-cooled liners are comprised of a large number of sub-millimeters closely-spaced holes, full 3D numerical simulations of the combustion chamber are still unaffordable. Thus, aero-thermal models are needed to describe the main flow-liner interaction. The aim of this paper is to provide a homogeneous wall model for gas turbine combustor liners based on wall-function similarities. In order to develop such a model, a numerical database was built up covering a wide range of interest for gas turbine applications. The model proposed here consists of two modified wall-functions for both sides of a liner and an analytical model to take into account the heat exchange within the holes. As holes are not reproduced and coarse near-wall grids are sufficient, the computational cost of this methodology is very low. The performance and limitations of the model are discussed. The model has proved satisfactory in assessing the effect of a liner on the surrounding and vice-versa. Although discrepancies were observed for the first rows, momentum and heat fluxes between the flow and the impinged wall are reproduced with a good level of agreement. Overall effectiveness is predicted with a mean relative error of less than 5%.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In