Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Sand Deposition in a Two-Pass Internal Cooling Duct

[+] Author Affiliations
Sukhjinder Singh, Danesh Tafti

Virginia Tech, Blacksburg, VA

Paper No. GT2015-44103, pp. V05AT11A039; 13 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by ASME


Sand transport and deposition is investigated in a two pass internal cooling ribbed geometry at near engine conditions. LES calculations are performed for bulk Reynolds number of 25,000 to calculate flow field and heat transfer. Constant wall temperature boundary condition is used to investigate the effect of temperature on particle deposition. Three different wall temperatures of 950 °C, 1000 °C and 1050 °C are considered. Particle sizes in range 0.5–25 microns are considered. A new deposition model which accounts for particle composition, temperature, impact velocity and angle and material properties of particle and surface is developed and applied. Calculated impingement and deposition patterns are discussed for different exposed surfaces in the two pass geometry. The highest particle impingement and deposition is observed in the bend region and first quarter of the second pass. Significant deposition is observed in the two pass geometry for all three wall temperatures considered. Particle impingement and hence deposition is dominated by larger particles except in the downstream half of the bend region. In total, approximately 38%, 59% and 67% of the injected particles deposit in the two passes, for the three wall temperatures of 950 °C, 1000 °C and 1050 °C, respectively. While particle impingement is highest for wall temperature of 950 °C, higher deposition is observed for 1000 °C and 1050 °C cases. Deposition increases significantly with wall temperature. For 1000 °C, roughly 12% of the impacting particles deposit. For 1050 °C, approximately 23% of the particles deposit on impact. For all the three cases, the second pass experiences higher deposition compared to the first pass due to higher turbulence and direct impingement.

Copyright © 2015 by ASME
Topics: Cooling , Sands , Ducts



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In