0

Full Content is available to subscribers

Subscribe/Learn More  >

Combined Effects of Jet Plate Thickness and Fillet Radius on Leading Edge Jet Impingement With Round and Racetrack Shaped Jets

[+] Author Affiliations
Weston V. Harmon, Lesley M. Wright

Baylor University, Waco, TX

Daniel C. Crites, Mark C. Morris, Ardeshir Riahi

Honeywell Aerospace, Phoenix, AZ

Paper No. GT2015-43505, pp. V05AT11A032; 13 pages
doi:10.1115/GT2015-43505
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by ASME

abstract

The effect of jet plate thickness is considered as regionally averaged Nusselt numbers are measured on a concave surface, which models the leading edge of modern gas turbine blades. The performance of both round and racetrack shaped orifices for leading edge impingement is considered. Regionally averaged heat transfer coefficient distributions are obtained in a steady state experiment using heated aluminum plates. From this traditional heat transfer technique, the heat transfer afforded by jet plates of varying thickness is quantified. The thickness of the jet plate is varied from 1.33 to 4.0 diameters (for both the round and racetrack shaped jets). To model the modern, cast airfoil, the effect of an inlet and outlet radius on the jet orifice is also investigated. For all cases, the jet – to – target surface spacing (z/djet) is 4, the jet – to – jet spacing (s/djet) is 8, and the target surface diameter – to jet diameter (D/djet) is 5.33. Target surface Nusselt numbers are obtained for three separate Reynolds numbers. For the round orifices, jet Reynolds numbers of 14,000, 28,100, and 42,100 are used while the corresponding Reynolds numbers for the racetrack shaped jets are 11,800, 23,600, and 35,400. Although the Reynolds number is reduced for the racetrack shaped jets, the mass flow through each jet remains constant (from the round to the racetrack jets). The Nusselt numbers measured in the stagnation region of the target surface are relatively insensitive to the jet plate thickness. For all cases considered, the flow is not developed as it exits the orifice, so the flow structures of the jets ensuing from each of the plates are similar. When the inlet of the jet is rounded, the vena contracta effect within the orifice is minimized, and a more symmetrical jet develops within the orifice. For a fixed flow rate, the racetrack shaped jets provide enhanced heat transfer compared to the round jets for all geometries considered.

Copyright © 2015 by ASME
Topics: Jets

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In