Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady CFD Analysis of Erosion Mechanism in the Coolant Channels of a Rotating Gas Turbine Blade

[+] Author Affiliations
Domenico Borello, Davide Anielli, Franco Rispoli, Alessandro Salvagni, Paolo Venturini

Sapienza Università di Roma, Rome, Italy

Paper No. GT2015-43266, pp. V05AT11A028; 11 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by ASME


The two-phase flow in a rotating wedge mimicking the final portion of a blade turbine internal cooling channel is here presented and discussed focusing on unsteady motion and erosion mechanisms. The rotation axis is placed to properly reproduce a configuration with a very strong deviation (90°).

The flow field was modelled by using the well known k-ε-ζ-f unsteady-RANS model based on the elliptic-relaxation concept. The model was modified by some of the authors to take into account the influence of turbulence anisotropy as well as rotation. The model was applied to the well-established and fully validated T-FlowS code.

A systematic comparison of rotating and non-rotating case was carried out to show the influence of Coriolis force on flow and erosion mechanisms.

The rotational effects strongly changed the flow behaviour within the channel, affecting both the unsteady flow and the particles trajectories. In the rotating case, there is no recirculation on the tip region; besides, position of the small recirculation regions above each pedestals change. These, and other minor effects, affect the particle motion thus resulting in a different erosion pattern.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In