0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Channel Geometry and Flow Variables on Cyclone Cooling of Turbine Blades

[+] Author Affiliations
Martin Bruschewski, Christian Scherhag, Heinz-Peter Schiffer, Sven Grundmann

Technische Universität Darmstadt, Darmstadt, Germany

Paper No. GT2015-42860, pp. V05AT11A020; 16 pages
doi:10.1115/GT2015-42860
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by ASME

abstract

The presented study deals with the internal cooling of turbine blades by swirling flow. The sensitivity of this flow type is investigated towards Reynolds number, swirl intensity and the common geometric features of cooling ducts. The flow system consists of a straight and round channel that is attached to a tangential-type swirl generator. The channel outlet features various orifices and 180-degree-bends. The investigated Reynolds number range is Re = 2000…32000 and the geometric swirl numbers are S* = 1,3,5. The experiments were carried out with Magnetic Resonance Velocimetry for which water was used as flow medium. As the main outcome, it was found that the investigated flows are highly sensitive to the conditions at the outlet of the channel. But it was also discovered that for some channel outlets the flow field remains the same. The associated flow type features a favorable topology for heat transfer: The majority of mass is transported in the annular region close to the channel walls. Together with its high robustness, it is regarded as an applicable type for the internal cooling of turbine blades. A Large Eddy Simulation was conducted to analyze the heat transfer characteristic of this flow. For S*=3 and Re=20000, the simulation showed an averaged Nusselt number increase of factor 4.7 compared to fully-developed flow. However, a pressure loss increase of factor 43 must be considered as well. The presented measurements and simulations have led to a further understanding of swirling flows and proved these flows advantageous for the internal cooling of turbine blades.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In