0

Full Content is available to subscribers

Subscribe/Learn More  >

Aerothermal Characterization of a Rotating Ribbed Channel at Engine Representative Conditions: Part II — Detailed LCT Measurements

[+] Author Affiliations
Ignacio Mayo, Aude Lahalle, Gian Luca Gori, Tony Arts

von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium

Paper No. GT2015-42847, pp. V05AT11A019; 13 pages
doi:10.1115/GT2015-42847
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by ASME

abstract

The present two-part work deals with a detailed characterization of the flow field and heat transfer distribution in a model of a rotating ribbed channel performed in a novel setup which allows test conditions at high Rotation numbers (Ro). The tested model is mounted on a rotating frame with all the required instrumentation, resulting in a high spatial resolution and accuracy. The channel has a cross section with an aspect ratio of 0.9 and a ribbed wall with 8 ribs perpendicular to the main flow direction. The blockage of the ribs is 10% of the channel cross section, whereas the rib pitch to height ratio is 10.

In this second part of the study, the heat transfer distribution over the wall region between the 6th and 7th ribs is obtained by means of Liquid Crystal Thermography (LCT). Tests were firstly carried out at a Reynolds number of 15000 and a maximum Ro of 1.00 to evaluate the evolution of the heat transfer with increasing rotation. On the trailing side, the overall Nusselt number increases with rotation until a limit value a 50% higher than in the static case, which is achieved after a value of the Rotation number of about 0.3. On the leading side, the overall Nusselt number decreases with increasing rotation speed to reach a minimum which is approximately 50% of the one found in static conditions. The velocity measurements at Re=15000 and Ro=0.77 provided in Part I of this paper are finally merged to provide a consistent explanation of the heat transfer distribution in this model. Moreover, heat transfer measurements were performed at Reynolds numbers of 30000 and 55000, showing approximately the same trend.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In