Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Secondary Flow Vortex Core Structure in the Two-Pass Rectangular Channel With 45° Ribs

[+] Author Affiliations
Jiangnan Zhu, Tieyu Gao, Jun Li, Guojun Li, Jianying Gong

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. GT2015-42782, pp. V05AT11A016; 13 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by ASME


The secondary flow which is generated by the angled rib is one of the key factors of heat transfer enhancement in gas turbine blade cooling channels. However, the current studies are all based on the velocity vector and streamline, which limit the research on the detailed micro-structure of secondary flow. In order to make further targeted optimization on the flow and heat transfer in the cooling channels of gas turbine blade, it is necessary to firstly investigate the generation, interaction, dissipation and the influence on heat transfer of secondary flow with the help of new topological method. This paper reports the numerical study of the secondary flow and the effect of secondary flow on heat transfer enhancement in rectangular two-pass channel with 45° ribs. Based on the vortex core technology, the structure of secondary flow can be clearly shown and studied. The results showed that the main flow secondary flow is thrown to the outer side wall after the corner due to the centrifugal force. Then it is weakened in the second pass and a new main flow secondary flow is generated at the same time near the opposite side wall in the second pass. The Nusselt number distribution has also been compared with the secondary flow vortex core distribution. The results shows that the heat transfer strength is weakened in the second pass due to the interaction between the old main flow secondary flow and the new one. These two secondary flows are in opposite rotation direction, which reduces the disturbance and mass transfer strength in the channel.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In