0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Target Wall Curvature on Heat Transfer and Pressure Loss From Jet Array Impingement

[+] Author Affiliations
John Harrington, Arash Nayebzadeh, Jonathan Winn, Wenping Wang, Jayanta Kapat

University of Central Florida, Orlando, FL

Michael Maurer, Steven Thorpe

Alstom Power, Baden, Switzerland

Paper No. GT2015-42761, pp. V05AT11A015; 13 pages
doi:10.1115/GT2015-42761
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by ASME and Alstom Technologie AG

abstract

Experiments to investigate the effect of target wall curvature on heat transfer and pressure loss from jet array impingement are performed. A jet plate configuration is studied with constant hole diameters and spacings. The geometry of the jet plate has streamwise jet spacings of 5.79 jet diameters, spanwise jet spacings of 4.49 jet diameters, and a jet-to-target plate distance of 3 jet diameters. For the curved case, the radius of the target plate is r/D=31.57. A flat target wall setup with identical geometric spacing is also tested for direct comparison. Jet spacings were chosen such that validation and comparison can be made with open literature. For all configurations, spent air is drawn out in a single direction which is tangential to the target plate curvature. Average jet Reynolds numbers ranging from 50,000 to 150,000 are tested. A steady-state measurement technique utilizing Temperature Sensitive Paint is used on the target surface to obtain Nusselt number distributions. Pressure taps placed on the sidewall of the channel are used to evaluate the flow distribution in the impingement channel. Alongside the experimental work, CFD was performed utilizing the v2-f turbulence model to better understand the relationship between the flow field and the heat transfer on the target surface. The main target of the current study is to quantify the impact of target wall radius, the decay of heat transfer after the impingement section and to check the open literature correlations. It was found that the target wall curvature caused higher heat transfer levels, with array-average Nusselt numbers increasing by an average of 28% when compared to the similar plane case. In the post-impingement section, increases in heat transfer levels were also seen with the curved case by up to 60%. Finally, CFD results were able to show agreement in stagnation point Nusselt number levels with experimental results for the curved target plate.

Copyright © 2015 by ASME and Alstom Technologie AG

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In