0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Rib Angle Orientation on Flow Field in a Two-Pass Parallelogram Channel With 180-Deg Sharp Turn

[+] Author Affiliations
Tong-Miin Liou, Shu-Po Chan

National Tsing Hua University, Hsinchu, Taiwan

Shyy-Woei Chang

National Kaohsiung Marine University, Kaohsiung City, Taiwan

Yu-Shuai Liu

Imperial College London, London, UK

Paper No. GT2015-42684, pp. V05AT11A013; 15 pages
doi:10.1115/GT2015-42684
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by ASME

abstract

Detailed flow patterns and turbulence parameters, including secondary-flow mean velocity vector, turbulent intensity, Reynolds stress and turbulent kinetic energy, are compared between three different rib orientations (45-deg, −45-deg, and 90-deg) in a two-pass ribbed-wall parallelogram channel with a 180-deg sharp turn. Velocity measurements were performed with Particle Image Velocimetry (PIV). The channel has a cross-sectional equal length, 45.5 mm, of adjacent sides and two pairs of opposite angles are 45-deg and 135-deg. The rib height-to-hydraulic diameter ratio and pitch-to-height ratio were 0.1 and 10, respectively. All the measurements were performed at a fixed Reynolds number, characterized by channel hydraulic diameter of 32.17 mm, cross-sectional bulk mean velocity, and fluid property of air at room temperature, of 10,000 and a null rotating number. A correlation between pitchwise variations of the reattachment lengths and rib-edge normal mean velocities is found. In addition, a comparison of the spanwise reattachment loci in the present parallelogram channel with those reported previously in the square channels is made. Overall, the 45-deg ribs and −45-deg or 90-deg ribs augment the secondary flow motion most in the first and second pass, respectively. Among the rib orientations investigated, the 45-deg and −45-deg ribs induce a pair of counter-rotating longitudinal vortices that strengthens the inlet-generated secondary flow in the first pass and the 180-deg sharp turn generated secondary flow in the second pass, respectively. One interesting finding is the noticeable difference in the flow characteristics near the top and bottom walls of the parallelogram channel for all three rib angles examined. On the contrary, previous studies with the square channels revealed almost the same heat transfer distributions on the ±45-deg ribbed top and bottom walls.

Copyright © 2015 by ASME
Topics: Flow (Dynamics)

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In