Full Content is available to subscribers

Subscribe/Learn More  >

Novel Turbulators to Enhance Turbine Blade Internal Heat Transfer Rates

[+] Author Affiliations
Venkata Naga Ramakumar Bommisetty

Honeywell Technology Solutions, Karnataka, India

Sridhar Murari

Honeywell Technology Solutions, Andhra Pradesh, India

Jong S. Liu, Malak F. Malak

Honeywell Aerospace, Phoenix, AZ

Paper No. GT2015-42431, pp. V05AT11A008; 10 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by ASME


Turbine blades are driven by hot gases from the combustor. The heat transfer from the hot gases produces substantial thermal load and can affect the performance of the turbine blades. In previous designs, cavities inside the blades were created to pass the coolant. Such cooling designs helped to increase the thermal performance of the blades by taking away the turbine blades’ heat. The cooling effect was further enhanced by increasing the turbulence in the flow of coolant. To increase the turbulence in the cavities, various turbulator designs were proposed. However, most of the designs have also introduced wake area while increasing the turbulence. This reduces the heat exchange between the coolant and the blade. The current paper discusses new designs of tabulators for turbine blades that increase the heat transfer rates of the cooling surface by increasing the turbulence of the coolant flow while minimizing the wake area.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In