0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Heat Transfer Investigation of an Impinging Jet Array on a Target Plate Roughened by Cubic Micro Pin Fins

[+] Author Affiliations
Robin Brakmann, Lingling Chen, Bernhard Weigand

University of Stuttgart, Stuttgart, Germany

Michael Crawford

Siemens Energy, Inc., Orlando, FL

Paper No. GT2015-42149, pp. V05AT11A002; 11 pages
doi:10.1115/GT2015-42149
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by Siemens Energy Inc.

abstract

A generic impingement cooling system for turbomachinery application is modeled experimentally and numerically to investigate heat transfer and pressure loss characteristics. The experimental setup consists of an array of 9 by 9 jets impinging on a target plate with cubic micro pin fins. The cubic micro pin fins have an edge length of 0.22 D and enlarge the target area by 150%. Experimentally heat transfer is measured by the transient liquid crystal (TLC) method. The transient method used requires a heated jet impinging on a cold target plate. As reference temperature for the heat transfer coefficient we use the total jet inlet temperature which is measured via thermocouples in the jet center. The CFD model was realized within the software package ANSYS CFX. This model uses a steady state - 3D - RANS approach and the shear stress transport (SST) turbulence model. Boundary conditions are chosen to mimic the experiments as close as possible. The effects of different jet-to-plate spacing (H/D = 3–5), crossflow schemes and jet Reynolds number (15,000–35,000) are investigated experimentally and numerically. The results include local Nusselt numbers as well as area and line averaged values. Numerical simulations allow a detailed insight into the fluid mechanics of the problem and complement experimental measurements. A good overall agreement of experimental and numerical behavior for all investigated cases could be reached. Depending on the crossflow scheme the cubic micro pin fin setup increases the heat flux to about 134%–142% compared to a flat target plate. At the same time the Nusselt number slightly decreases. The micro pin fins increase the pressure loss by not more than 14%. The results show that the numerical model predicts the heat transfer characteristics of the cubic micro pin fins in a satisfactory way.

Copyright © 2015 by Siemens Energy Inc.
Topics: Heat transfer , Fins

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In