Full Content is available to subscribers

Subscribe/Learn More  >

Investigation Into Coupling Techniques for a High Pressure Turbine Blade Tip

[+] Author Affiliations
Stefano Caloni, Shahrokh Shahpar

Rolls-Royce plc, Derby, UK

Paper No. GT2015-43292, pp. V05AT10A017; 10 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 5A: Heat Transfer
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5671-0
  • Copyright © 2015 by Rolls-Royce plc


In this paper the aero-thermal performance of a high pressure turbine rotor blade is investigated, making use of coupled and uncoupled simulations. The fluid domain is solved via Finite Volume analyses whilst Finite Elements are used in the solid domain. In the CFD model, a temperature distribution is imposed as a boundary condition at the interfaces between the fluid and the solid domain. In the corresponding FE model, a convective zone is applied. The parameters of the convective zone are computed from the CFD analysis. In the uncoupled simulations, the convective zone can make use of a two or three parameters model. In the first case, a linear relation between the heat flux and the wall temperature is assumed, whilst in the second model a parabolic relation is adopted. In the coupled simulation, an iterative process is used where the temperature distribution in the CFD model and the parameters of the convective zone in the FE model are updated at every iteration. The aforementioned three models are applied to a shroudless blade with and without an internal cooling system. When the blade is uncooled, all three methods offer a close prediction of the temperature reached by the component. However, when the blade is internally cooled the convective zone based on two parameters fails to provide a trustworthy prediction. The three-parameter convective zone, on the other hand, shows a closer agreement with the coupled simulation. The couple simulation is then applied to investigate the performance of three different tip configurations, a simple cavity, a novel contoured cavity and a tip with a small winglet. The small winglet shows a significant improvement in aerodynamic performance as well as a reduction in the operative temperature.

Copyright © 2015 by Rolls-Royce plc



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In