Full Content is available to subscribers

Subscribe/Learn More  >

Design Improvement Survey for NOx Emissions Reduction of a Heavy-Duty Gas Turbine Partially Premixed Fuel Nozzle Operating With Natural Gas: Numerical Assessment

[+] Author Affiliations
Alessandro Innocenti, Antonio Andreini, Bruno Facchini

University of Florence, Florence, Italy

Matteo Cerutti, Gianni Ceccherini, Giovanni Riccio

GE Oil & Gas Nuovo Pignone s.r.l., Florence, Italy

Paper No. GT2015-42730, pp. V04AT04A056; 11 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5668-0
  • Copyright © 2015 by ASME


A numerical investigation of a low NOx partially premixed fuel nozzle for heavy-duty gas turbine applications is presented in this paper. Availability of results from a recent test campaign on the same fuel nozzle architecture allowed the exhaustive comparison study presented in this work.

At first, an assessment of the turbulent combustion model was carried out, with a critical investigation of the expected turbulent combustion regimes in the system and taking into account the partially premixed nature of the flame due to the presence of diffusion type pilot flames. In particular, the Fluent partially premixed combustion model and a flamelet approach are used to simulate the flame. The laminar flamelet database is generated using the Flamelet Generated Manifold (FGM) chemistry reduction technique. Species and temperature are parameterized by mixture-fraction and progress variable. Comparisons with calculations with partially premixed model and the steady diffusion flamelet (SDF) database are made for the baseline configuration in order to discuss possible gains associated with the introduced dimension in the FGM database (reaction progress) which makes it possible to account for non-equilibrium effects. Numerical characterization of the baseline nozzle has been carried out in terms of NOx. Computed values for both the baseline and some alternative premixer designs have been then compared with experimental measurements on the reactive test rig at different operating conditions and different split ratios between main and pilot fuel. Numerical results allowed pointing out the fundamental NOx formation processes, both in terms of spatial distribution within the flame and in terms of different formation mechanisms. The obtained knowledge would allow further improvement of fuel nozzle design.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In