Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Procedure for the Investigation of Combustion Dynamics in Industrial Gas Turbines: LES, RANS and Thermoacoustics

[+] Author Affiliations
Luca Rofi, Giovanni Campa, Vyacheslav Anisimov, Federico Daccá, Edoardo Bertolotto, Enrico Gottardo, Federico Bonzani

Ansaldo Energia S.p.A., Genova, Italy

Paper No. GT2015-42168, pp. V04AT04A016; 13 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5668-0
  • Copyright © 2015 by ASME


The necessity for a combustion system to work with premixed flames and its capability to cope with rapid load variations avoiding the occurrence of thermo-acoustic instabilities, has led to investigate the complex dynamic phenomena that occur during combustion. Thanks to numerical simulations it is possible to examine these complex mechanisms getting useful information to optimize the combustion system. The aim of this work is to describe a numerical procedure developed in Ansaldo Energia for the investigation of combustion dynamics occurring in Ansaldo Energia gas turbines.

In this paper, firstly the experimental apparatus of a full scale atmospheric test rig equipped with Ansaldo Energia burner is described. Secondly, the flame behavior is studied by means of a Large Eddy Simulation (LES). Once the LES has reached a statistically stationary state, a forcing is added to the system to compute the Flame Transfer Function (FTF), in terms of amplitude n and delay time τ, related to initial phases of humming. Thirdly, the forced flame simulations are used as the input of an Helmholtz solver to analyze the acoustic behavior of the system, which is then compared to experimental data. Finally, to evaluate the feasibility of a less computationally intensive approach, a RANS simulation of the same configuration is described and the results are transferred to FEM (Finite Element Method) Helmholtz solver: a comparison between the LES approach and the RANS approach is carried out with reference to the experimental data.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In