0

Full Content is available to subscribers

Subscribe/Learn More  >

Waste Heat Recovery in LNG Liquefaction Plants

[+] Author Affiliations
P. Pillai, C. Meher-Homji, F. Meher-Homji

Bechtel Corporation, Houston, TX

Paper No. GT2015-42006, pp. V003T20A001; 16 pages
doi:10.1115/GT2015-42006
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5667-3
  • Copyright © 2015 by ASME

abstract

High thermal efficiency of LNG liquefaction plants is of importance in order to minimize feed usage and to reduce CO2 emissions. The need for high efficiency becomes important in gas constrained situations where savings in fuel auto consumption of the plant for liquefaction chilling and power generation can be converted into LNG production and also from the standpoint of CO2 reduction. This paper will provide a comprehensive overview of waste heat recovery approaches in LNG Liquefaction facilities as a measure to boost thermal efficiency and reduce fuel auto-consumption. The paper will cover types of heating media, the need and use of heat for process applications, the use of hot oil, steam and water for process applications and direct recovery of waste heat. Cogeneration and combined cycle approaches for LNG liquefaction will also be presented along with thermal designs. Parametric studies and cycle studies relating to waste heat recovery from gas turbines used in LNG liquefaction plants will be provided.

The economic viability of waste heat recovery and the extent to which heat integration is deployed will depend on the magnitude of the accrual of operating cost savings, and their ability to counteract the initial capital outlay. Savings can be in the form of reduced fuel gas costs and reduced carbon dioxide taxes. Ultimately the impact of these savings will depend on the owner’s measurement of the value of fuel gas; whether fuel usage is accounted for as lost feed or lost product. The negative impacts include the reduction in nitrogen rejection that occurs with reduced fuel gas usage and the power restrictions imposed on gas turbine drivers due to the increased exhaust system back-pressure caused by the presence of the WHRU. When steam systems are acceptable, a cogeneration type liquefaction facility can be attractive. In addition to steam generation and hot oil heating, newer concepts such as the use of ORCs or supercritical CO2 cycles will also be addressed.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In