Full Content is available to subscribers

Subscribe/Learn More  >

Application of Data Reconciliation Method to Increase CCPP Performance Test Result Accuracy

[+] Author Affiliations
Zengqian Wang, Jingjin Ji, Xinghao Wang, Bo Sun, Lei He, Qiang Xu

Shanghai Electric Power Generation Group R&D Center, Shanghai, China

Paper No. GT2015-43901, pp. V003T08A012; 9 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5667-3
  • Copyright © 2015 by ASME


Performance acceptance test for gas-steam Combined Cycle Power Plant (CCPP) is of great significance for both equipment manufacturer and customer. The influence of measurement error on the calculation of guaranteed performance data as power output and heat rate can lead to unnecessary loss for either party. Commonly used uncertainty analysis method based on ASME PTC 19.1 would require all measuring instrumentation working at designed accuracy range. Meanwhile, due to the complexity of CCPP system and large number of measuring items, and as well the propagation of measurement and data reduction error, the uncertainty of corrected performance data could be significant. In this paper, process data reconciliation method based on VDI 2048 is introduced. With access to complete performance test data from a CCPP project, data reconciliation calculation is performed with an appropriate thermodynamic model. Several measurement values with gross error are identified and verified in heat balance calculation. Moreover, after recalculating with the reconciled data instead of raw data for the corrected power output and heat rate, comparison with the common uncertainty analysis method is also carried out. It is shown that with this reconciliation method, it is not only possible to find out gross errors such as instrumentation drift, but also able to dramatically increase the test result accuracy, which is of great value for both manufacturer and customer.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In