0

Full Content is available to subscribers

Subscribe/Learn More  >

UHEGT: The Ultra-High Efficiency Gas Turbine Engine With Stator Internal Combustion

[+] Author Affiliations
Meinhard T. Schobeiri, Seyed M. Ghoreyshi

Texas A&M University, College Station, TX

Paper No. GT2015-43447, pp. V003T06A019; 17 pages
doi:10.1115/GT2015-43447
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5667-3
  • Copyright © 2015 by ASME

abstract

The current article introduces a physics based revolutionary technology that enables energy efficiency and environmental compatibility goals of future generation aircraft and power generation gas turbines. An Ultra-High Efficiency Gas Turbine technology (UHEGT) is developed, where the combustion process is no longer contained in isolation between the compressor and turbine, rather distributed in three stages and integrated within the first three HP-turbine stator rows. The proposed distributed combustion results in high thermal efficiencies, which cannot be achieved by conventional gas turbine engines. Particular fundamental issues of aero-thermodynamic design, combustion, and heat transfer are addressed in this study along with comprehensive CFD simulations. The aero-thermodynamic study shows that the UHEGT-concept improves the thermal efficiency of gas turbines 5–7% above the current most advanced high efficiency gas turbine engines, such as Alstom GT24. Multiple configurations are designed and simulated numerically to achieve the optimum configuration for UHEGT. CFD simulations include combustion process in conjunction with a rotating turbine row. Temperature and velocity distributions are investigated as well as power generation, pressure losses, and NOx emissions. Results show that the configuration in which fuel is injected into the domain through cylindrical tubes provides the best combustion process and the most uniform temperature distribution at the rotor inlet.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In