Full Content is available to subscribers

Subscribe/Learn More  >

T100 Micro Gas Turbine Converted to Full Humid Air Operation: A Thermodynamic Performance Analysis

[+] Author Affiliations
Ward De Paepe, Marina Montero Carrero, Svend Bram, Francesco Contino

Vrije Universiteit Brussel, Brussels, Belgium

Paper No. GT2015-43267, pp. V003T06A015; 11 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5667-3
  • Copyright © 2015 by ASME


Waste heat recovery has become more and more important for the profitability of small-scale Combined Heat and Power (CHP) plants like micro Gas Turbines (mGTs). Adding a saturation tower to the mGT unit is such a waste heat recovery route. The cycle includes the saturation tower after the compressor to humidify the compressed air. Simulations show that this cycle, known as the micro Humid Air Turbine (mHAT), increases mGT electric efficiency by 7% relatively (2% absolute), improving the general economic performance. The mHAT concept with saturation tower was however never tested experimentally. To show the potential of the cycle, the Turbec T100 mGT of the University of Brussels was converted into a mHAT cycle by adding a spray saturation tower to the system. In this paper, we present the results of several water injection tests in the T100 mGT at part and nearly nominal load. The water injection experiments resulted in stable mGT operation at reduced rotational speed and pressure ratio and increased electric efficiency. Experimental results showed a reduced fuel mass flow rate by 4.3% and a relative electric efficiency increase of 4.8% for the different experiments. In addition, the impact of the water on the other turbine parameters has been studied.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In