Full Content is available to subscribers

Subscribe/Learn More  >

Systematic Fluid Selection for Organic Rankine Cycles (ORC) and Performance Analysis for a Combined High and Low Temperature Cycle

[+] Author Affiliations
Maximilian Rödder, Matthias Neef, Christoph Laux

University of Applied Sciences Düsseldorf, Düsseldorf, Germany

Klaus-P. Priebe

ORC-Consult, Dortmund, Germany

Paper No. GT2015-42432, pp. V003T06A009; 11 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5667-3
  • Copyright © 2015 by ASME


The organic Rankine cycle (ORC) is an established thermodynamic process that converts waste heat to electric energy. Due to the wide range of organic working fluids available the fluid selection adds an additional degree of freedom to the early design phase of an ORC process. Despite thermodynamic aspects such as the temperature level of the heat source, other technical, economic and safety aspects have to be considered. For the fluid selection process in this paper, 22 criteria were identified in six main categories while distinguishing between elimination and tolerance criteria. For an ORC design, the suggested method follows a practical engineering approach and can be used as a structured way to limit the number of interesting working fluids before starting a detailed performance analysis of the most promising candidates. For the first time the selection process is applied to a two-stage reference cycle which uses the waste heat of a large reciprocating engine for cogeneration power plants. It consists of a high temperature and a low temperature cycle in which the condensation heat of the high temperature (HT) cycle provides the heat input of the low temperature (LT) cycle. After the fluid selection process the detailed thermodynamic cycle design is carried out with a thermodynamic design tool that also includes a database for organic working fluids. The investigated ORC cycle shows a net thermal efficiency of about 17,4% in the high temperature cycle with Toluene as the working fluid and 6,2% in low temperature cycle with iso-Butane as the working fluid. The electric efficiency of the cogeneration plant increases from 40,4% to 46,97% with the both stages of the two-stage ORC in operation.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In