Full Content is available to subscribers

Subscribe/Learn More  >

Ambient Temperature Impact on Pressurized SOFC Hybrid Systems

[+] Author Affiliations
Luca Larosa, Alberto Traverso

University of Genoa, Genoa, Italy

Valentina Zaccaria

U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV

Paper No. GT2015-42364, pp. V003T06A006; 12 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5667-3
  • Copyright © 2015 by ASME


In this paper advanced control strategies based on Model Predictive Control (MPC) method are compared against a traditional PID controller in a Gas Turbine Pressurized SOFC hybrid system.

A model of the integrated mGT-SOFC hybrid system has been developed to analyze the impact of ambient temperature changes on system performance and dynamic behaviour. Four different MIMO controllers (multi input multi output) based on a linearized system model have been implemented in order to control fuel cell temperature and power with different ambient temperatures. Fuel cell temperature is regulated by manipulating the cell by-pass mass flow, while power is regulated by changing the fuel cell electrical current and fuel mass flow (the fuel utilization factor is kept constant). Load following simulations have been carried out as follows: the same load ramp from 100% to 80% of fuel cell power and back has been set and studied under three different ambient conditions, 263K, 288K and 313K (−10°C, 15°C and 40°C).

MPC demonstrated superior performance over the two distributed PID controls, thanks to the better setpoint tracking on the cell temperature, which is particularly evident when the ambient temperature deviates from the nominal condition. This is mainly explained by the capability of MPC in including the effects of non-linearities of the real system.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In