Full Content is available to subscribers

Subscribe/Learn More  >

System Integration and Techno-Economy Analysis of the IGCC Plant With CO2 Capture: Results of the EU H2-IGCC Project

[+] Author Affiliations
Mohammad Mansouri Majoumerd, Mohsen Assadi

International Research Institute of Stavanger, Stavanger, NorwayUniversity of Stavanger, Stavanger, Norway

Peter Breuhaus, Øystein Arild

International Research Institute of Stavanger, Stavanger, Norway

Paper No. GT2015-43917, pp. V003T03A012; 11 pages
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5667-3
  • Copyright © 2015 by ASME


The overall goal of the European co-financed H2-IGCC project was to provide and demonstrate technical solutions for highly efficient and reliable gas turbine technology in the next generation of integrated gasification combined cycle (IGCC) power plants with CO2 capture suitable for combusting undiluted H2-rich syngas.

This paper aims at providing an overview of the main activities performed in the system analysis working group of the H2-IGCC project. These activities included the modeling and integration of different plant components to establish a baseline IGCC configuration, adjustments and modifications of the baseline configuration to reach the selected IGCC configuration, performance analysis of the selected plant, performing techno-economic assessments and finally benchmarking with competing fossil-based power technologies.

In this regard, an extensive literature survey was performed, validated models (components and sub-systems) were used, and inputs from industrial partners were incorporated into the models. Accordingly, different plant components have been integrated considering the practical operation of the plant. Moreover, realistic assumptions have been made to reach realistic techno-economic evaluations.

The presented results show that the efficiency of the IGCC plant with CO2 capture is 35.7% (lower heating value basis). The results also confirm that the efficiency is reduced by 11.3 percentage points due to the deployment of CO2 capture in the IGCC plant. The specific capital costs for the IGCC plant with capture are estimated to be 2,901 €/(kW net) and the cost of electricity for such a plant is 90 €/MWh.

It is also shown that the natural gas combined cycle without CO2 capture requires the lowest capital investment, while the lowest cost of electricity is related to IGCC plant without CO2 capture.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In