0

Full Content is available to subscribers

Subscribe/Learn More  >

Uncertainty Quantification of Hot Gas Ingestion for a Gas Turbine Nozzle Using Polynomial Chaos

[+] Author Affiliations
Andrea Panizza, Alessio Bonini, Luca Innocenti

GE Oil & Gas, Florence, Italy

Paper No. GT2015-42679, pp. V02CT45A009; 12 pages
doi:10.1115/GT2015-42679
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 2C: Turbomachinery
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5665-9
  • Copyright © 2015 by ASME

abstract

One of the most critical parameters in the design process of cooled hot gas components, is the Back Flow Margin (BFM). This dimensionless parameter quantifies the margin to hot gas ingestion through a cooled component wall. A correct evaluation of this parameter is crucial in order to avoid component failure. In presence of combustion chambers that exhibit low pressure losses, BFM becomes one of the most restrictive requirements in the thermal design of cooled components.

In this work, a conceptual BFM assessment of the first nozzle of an HP gas turbine is described. The component is subject to the highest thermal load; complex cooling systems are required to ensure an acceptable metal temperature and to match life time requirement. Due to manufacturing tolerances and fluid dynamic uncertainties, hot gas ingestion events are possible also for a nozzle that exhibits BFM higher than zero in nominal conditions, even if with a low probability. Here, the cooling scheme of the nozzle is modeled using an in-house fluid network tool that allows a quick and accurate computation of the equivalent cooling scheme and thus the occurrence of hot gas ingestion, corresponding to a negative flow rate in one of the cooling sub-models.

However, as the probability of hot gas ingestion is rather small, an accurate estimation of this event based on the standard Monte Carlo method requires a huge number of runs. A more efficient estimation of this probability can be obtained using stochastic expansion methods, such as the Polynomial Chaos Expansion. Pseudospectral approximations based on either a tensor-product expansion or the Sparse Pseudospectral Approximation Method (SPAM) are used, in order to estimate the probability of hot gas ingestion and the sensitivity to random parameters. The results are compared with those coming from Monte Carlo method, showing the superior accuracy of the stochastic expansion methods.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In