0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of a Highly Loaded Centrifugal Compressor With Pipe Diffuser at Design and Off-Design Operating Conditions

[+] Author Affiliations
Ge Han

Chinese Academy of Sciences, Beijing, ChinaUniversity of Chinese Academy of Sciences, Beijing, China

Xingen Lu, Yanfeng Zhang, Shengfeng Zhao, Junqiang Zhu

Chinese Academy of Sciences, Beijing, China

Paper No. GT2015-43426, pp. V02CT42A030; 12 pages
doi:10.1115/GT2015-43426
From:
  • ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
  • Volume 2C: Turbomachinery
  • Montreal, Quebec, Canada, June 15–19, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5665-9
  • Copyright © 2015 by ASME

abstract

This present work is aimed at providing detailed understanding of the flow mechanisms in a highly loaded centrifugal compressor with different diffusers. Performance comparison between compressor stages with pipe diffuser and its original wedge diffuser was conducted by a validated state-of-the-art multi-block flow solver at different rotating speeds. Stage with pipe diffuser achieved a better performance above 80% rotating speed but a worse performance at lower rotating speeds near surge, than that of stage with wedge diffuser. Four operating points including the design point were analyzed in detail. The inherent diffuser leading edge of pipe diffuser could alleviate the flow distortion upstream diffuser throat and created a better operating condition for the downstream diffusion, which reduced the possibility of flow separation in discrete passages at design rotating speed. At 60% rotating speed operating point, there was a misalignment between the leading edge absolute flow angle and the metal angle of diffuser, resulted in an acceleration near diffuser leading edge due to the large negative incidence angle. The sharp leading edge of pipe diffuser could largely accommodate this negative incidence as comparison of the round leading edge of wedge diffuser. As a result, the flow separation was depressed and a better performance was achieved in the pipe diffuser. At 60% rotating speed near surge, performance of the pipe diffuser dropped below wedge diffuser. Total pressure loss of pipe diffuser exceeded that of the wedge diffuser due to the larger friction loss near wall at throat and cone, meanwhile ineffective static pressure recovery for pipe diffuser was triggered by the strong boundary layer blockage in the front of pipe diffuser cone.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In